High speed decoding of the binary (47, 24, 11) quadratic residue code
نویسندگان
چکیده
An efficient table lookup decoding algorithm (TLDA) is presented to decode up to five possible errors in a binary systematic (47,24,11) quadratic residue (QR) code. The main idea of the TLDA is based on the weight of syndrome, the syndrome decoder together with a reduced-size lookup table (RSLT), and the shift-search method given by Reed et al. Thus, the size of the lookup table and computational complexity in a finite field can be significantly reduced. The memory size of the proposed condensed lookup table (CLT) consists of only 36.6 Kbytes and is only about 0.24% of the full lookup table (FLT) and 3.2% of the lookup up table given by Chen et al., respectively. These facts lead to significant reduction of computational time and the decoding complexity. A simulation result shows that the decoding speed of the proposed TLDA is much faster than all existing decoding algorithms. Moreover, it can be extended to decode all QR codes, including the class of the cyclic codes when the code length is moderate. The CLT makes this new decoding algorithm suitable for hardware or firmware implementations. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
Decoding of the Five-Error-Correcting Binary Quadratic Residue Codes
In this paper, a new efficient syndrome-weight decoding algorithm (NESWDA) is presented to decode up to five possible errors in a binary systematic (47, 24, 11) quadratic residue (QR) code. The main idea of NESWDA is based on the property cyclic codes together with the weight of syndrome difference. The advantage of the NESWDA decoding algorithm over the previous table look-up methods is that i...
متن کاملAlgebraic Decoding of Quadratic Residue Codes Using Berlekamp-Massey Algorithm
In this paper, an algebraic decoding method is proposed for the quadratic residue codes that utilize the Berlekamp-Massey algorithm. By a modification of the technique developed by He et al., one can express the unknown syndromes as functions of the known syndromes. The unknown syndromes are determined by an efficient algorithm also developed in this paper. With the appearance of unknown syndro...
متن کاملDecoding the Ternary (23, 11, 9) Quadratic Residue Code
Quadratic residue (QR) codes are cyclic, nominally half-rate codes, that are powerful with respect to their error-correction capabilities. Decoding QR codes is in general a difficult task, but great progress has been made in the binary case since the work of Elia [1] and He et al. [2]. Decoding algorithms for certain nonbinary QR codes were proposed by Higgs and Humphreys in [3] and [4]. In [5]...
متن کاملOn the Pless-construction and ML decoding of the (48, 24, 12) quadratic residue code
We present a method for maximumlikelihood decoding of the (48; 24; 12) quadratic residue code. This method is based on projecting the code onto a subcode with an acyclic Tanner graph, and representing the set of coset leaders by a trellis diagram. This results in a two level coset decoding which can be considered a systematic generalization of the Wagner rule. We show that unlike the code does ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 180 شماره
صفحات -
تاریخ انتشار 2010